Détails Publication
ARTICLE

NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONSINVOLVING VARIABLE EXPONENT AND MEASURE DATA

  • Memoirs on Differential Equations and Mathematical Physics , Volume 92 (2024) : 13-40
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : OUARO Stanislas
Renseignée par : TRAORÉ Urbain

Résumé

This paper deals with the question of the existence of entropy solutions for the problem− div(a(x, u, ∇u) + φ(u)) + g(x, u, ∇u) = µ posed in an open bounded subset Ω of R^N with the homogeneous Neumann boundary condition (a(x, u, ∇u) + φ(u)) · η = 0. The functional setting involves Lebesgue and Sobolev spaces with variable exponent

Mots-clés

Nonlinear elliptic problem, variable exponents, entropy solution, Neumannboundary conditions, Radon measure

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets