Détails Publication
ARTICLE

On nilpotency in Leibniz algebras

  • arXiv preprint arXiv:1605.08115
Discipline : Non spécifiée
Auteur(s) :
Auteur(s) tagués : OUATTARA Moussa
Renseignée par : OUATTARA Moussa

Résumé

The main result of this paper is to prove that if a (right) Leibniz algebra L is right nilpotent of degree

n, then L is strongly nilpotent of degree less or equal to 4n2 − 2n + 1. Résumé Nous prouvons

que toute algèbre de Leibniz (droite) L nilpotente à droite d'indice n est fortement nilpotente

d'un indice inférieur ou égal à 4n2 − 2n + 1 … Keywords. Leibniz algebra, right nilpotency, left

nilpotency, nilpotency, strong nilpotency, index. 2010 Mathematics Subject Classification:

17A32, 17B30 … In [1] it is proved that a Malcev algebra is strongly nilpotent if and only if it

is right nilpotent. So for Malcev algebras right nilpotency, left nilpotency and strong nilpotency

are equivalent to nilpotency. Since Malcev algebra is anti-commutative, right nilpotency and

left nilpotency are equivalent. This result fails for Leibniz algebras, see for example [4, Exemple

3.3], which is left nilpotent and not right nilpotent … ∗: bere_jean0@yahoo.fr † …

Mots-clés

Aucun mot-clé renseigné.

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets