ARTICLE
Primitive idempotents and constacyclic codes over finite chain rings
- Gulf Journal of Mathematics , 8 (2) : 55-67
Lien de l'article :
https://gjom.org/index.php/gjom/article/view/434
Discipline :
Mathématiques
Auteur(s) :
Mohammed Elhassani Charkani, Joël Kabore
Auteur(s) tagués :
KABORE Joël
Renseignée par : KABORE Joël
Résumé
Let R be a commutative local nite ring. In this paper, we construct the complete set of pairwise orthogonal primitive idempotents of R[X]/ where g is a regular polynomial in R[X]. We use this set to decompose
the ring R[X]/ and to give the structure of constacyclic codes over
nite chain rings. This allows us to describe generators of the dual code C?
of a constacyclic code C and to characterize non-trivial self-dual constacyclic
codes over finite chain rings.
Mots-clés
finite chain ring, idempotent, constacyclic code