Détails Publication
ARTICLE

SPATIO-TEMPORAL MATHEMATICAL MODELING OF INFECTIOUS DISEASES WITH CROSS DIFFUSION EFFECTS

  • JP Journal of Mathematical Sciences , Volume (35) : 1-35
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : SOMA Safimba
Renseignée par : SOMA Safimba

Résumé

In this paper, we study analytically a class of nonlinear parabolic reaction- diffusion systems modeling the spread of infectious diseases with cross- diffusion terms. This model is governed by an S-I-R type system. First, we
prove the global existence of weak solution to this class of system by means of an approximation process, the Faedo-Galerkin method, some a priori estimates and compactness arguments. Then, using Gronwall’s lemma, we establish an existence and uniqueness result of weak solution for this class of systems without the cross-diffusion terms.

Mots-clés

Keywords and phrases: infectious diseases, S-I-R model, cross-diffusion system, weak solutions, Faedo-Galerkin.

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets