Détails Publication
ARTICLE

Bifurcation and stability Analysis in Complex Cross-Diffusion Mathematical Model of Phytoplankton-Fish Dynamics

  • JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS , 32 (3) : 207-228
Lien de l'article :
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : OUEDRAOGO Hamidou
Renseignée par : OUEDRAOGO Hamidou

Résumé

In this paper, we propose a nonlinear reaction-diffusion system describing the interaction
between toxin-producing phytoplankton and fish population. We analyze the effect of cross-diffusion on
the dynamics of the system. The mathematical study of the model leads us to have an idea on the existence
of a solution, the existence of equilibria and the stability of the stationary equilibria. Finally, numerical
simulations performed at two-dimensions allowed us to establish the formation of spatial patterns and a
threshold of release of the toxin, above which we talk about the phytoplankton blooms.

Mots-clés

Toxin effect; populations dynamics; predator-prey model; reaction-diffusion system; bifurcation; pattern formation.

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets