ARTICLE
The unit bundle of a real hyperbolic space
- JP Journal of Geometry and Topology , 30 (2) : 105-117
Lien de l'article :
https://doi.org/10.17654/0972415X24007
Discipline :
Mathématiques
Auteur(s) :
Alfred Touré, Daniel Koama, Mikaïlou Compaoré, Marie Françoise Ouedraogo
Auteur(s) tagués :
OUEDRAOGO Marie Françoise
Renseignée par : OUEDRAOGO Marie Françoise
Résumé
The purpose of this article is to study the two homogeneous structures of the unit bundle UH^n of a real hyperbolic space. In both the cases, we determine the -invariant Riemannian metrics. In passing, we examine whether the geodesic flow is an isometry of UH^n when equipped with its Levi-Civita metric. Finally, we study the manifold of geodesics of H^n
seen as a homogeneous space.
Mots-clés
hyperbolic space, isotropy representations, unit bundle