Détails Publication
ARTICLE

NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENT AND MEASURE DATA

  • MEM. DIFFER. EQU. MATH. PHYS , 92 (2024) : 13-40
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : OUARO Stanislas
Renseignée par : OUARO Stanislas

Résumé

This paper deals with the question of the existence of entropy solutions for the problem −div(a(x,u,∇u)+ϕ(u))+g(x,u,∇u)=μ posed in an open bounded subset Ω of ℝN with the homogeneous Neumann boundary condition (a(x,u,∇u)+ϕ(u))⋅η=0. The functional setting involves Lebesgue and Sobolev spaces with variable exponent

Mots-clés

quasilinear elliptic equation; Neumann condition; existence of entropy solutions

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets