ARTICLE
NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENT AND MEASURE DATA
- MEM. DIFFER. EQU. MATH. PHYS , 92 (2024) : 13-40
Discipline :
Mathématiques
Auteur(s) :
M. B. Benboubker, S. Ouaro, U. Traoré
Auteur(s) tagués :
OUARO Stanislas
Renseignée par : OUARO Stanislas
Résumé
This paper deals with the question of the existence of entropy solutions for the problem −div(a(x,u,∇u)+ϕ(u))+g(x,u,∇u)=μ posed in an open bounded subset Ω of ℝN with the homogeneous Neumann boundary condition (a(x,u,∇u)+ϕ(u))⋅η=0. The functional setting involves Lebesgue and Sobolev spaces with variable exponent
Mots-clés
quasilinear elliptic equation; Neumann condition; existence of entropy solutions