ARTICLE
Numerical analysis of a quasilinear parabolic problem with variable exponent
- Electron. J. Math , 9 (2025) : 38-55
Discipline :
Mathématiques
Auteur(s) :
N. Rabo, U. Traoré, S. Ouaro
Auteur(s) tagués :
RABO Noufou
TRAORÉ Urbain
Renseignée par : OUARO Stanislas
Résumé
This paper deals with the numerical approximation of the mild solution of a quasilinear parabolic equation with variable exponent. Under some conditions, it is shown that the mild solution is a weak solution. Numerical tests are performed using the split Bregman method. The functional setting involves Lebesgue and Sobolev spaces with variable exponent.
Mots-clés
Leray-Lions operator with variable exponent; parabolic equation; numerical; iterative method; mild solution