Détails Publication
ARTICLE

Entropy solutions for a doubly nonlinear elliptic problem with variable exponent.

  • J. Math. Anal. Appl. , 370 (2) : 392-405
Discipline : Mathématiques
Auteur(s) :
Auteur(s) tagués : BONZI Kaka Bernard
Renseignée par : OUARO Stanislas

Résumé

The nonlinear boundary value problem with a p(x)-Laplace type operator under Dirichlet boundary condition is studied. The condition of regularity is relaxed on the variable exponent p(⋅) and on the function b appearing in the governing equation. Although the existence and uniqueness of weak energy solution presented in Section 3 is trivial, an attempt has been made to develop the existence and uniqueness of the entropy solution of the problem.

Mots-clés

generalized Lebesgue-Sobolev spaces; weak energy solution; entropy production; p(x)-Laplace operator

938
Enseignants
8085
Publications
49
Laboratoires
101
Projets