ARTICLE
Existence and uniqueness of entropy solutions to nonlinear elliptic problems with variable growth
- Int. J. Evol. Equ. , 4 (4) : 451-471
Discipline :
Mathématiques
Auteur(s) :
S. Ouaro, S. traoré
Auteur(s) tagués :
OUARO Stanislas
Renseignée par : OUARO Stanislas
Résumé
The authors study the boundary value problem
{u−div(a(x,∇u))=fu=0inΩ,onΩ,
where Ω is a smooth bounded domain in RN(N≥3) and div(a(x,∇u)) is a p(x)-Laplace type operator. The main results presented are Theorems 3.2 and 4.3, obtained by using variational arguments, which establish the existence and uniqueness of weak energy solutions, for f∈L∞(Ω), and entropy solutions, for f∈L1(Ω), to the above problem.
There are a few misprints in this article.
Mots-clés
generalized Lebesgue-Sobolev space; weak energy solution; entropy solution; p(x)-Laplace operator; electrorheological fluid