ARTICLE
Nonlinear Neumann problems involving p(x)-Laplace operator and measure data
- Discuss. Math., Differ. Incl. Control Optim. , 39 (2) : 181-212
Discipline :
Mathématiques
Auteur(s) :
E. Nassouri, S. Ouaro, U. Traoré
Auteur(s) tagués :
OUARO Stanislas
TRAORE Urbain
Renseignée par : OUARO Stanislas
Résumé
In this paper we study the existence and uniqueness of entropy solution to the class of nonlinear p(⋅)-Laplace problems of the type div(Φ(∇u−Θ(u)))+|u|p(x)−2u+α(u)∋μ with μ a diffuse measure and a Neumann nonhomogeneous boundary conditions of the form Φ(∇(u)−Θ(u))⋅η+β(u)=g. The functional setting involves Lebesgue and Sobolev spaces with variable exponent.
Mots-clés
nonlinear elliptic; maximal monotone graph; Radon measure; entropy solution