ARTICLE
Existence of renormalized solutions for some quasilinear elliptic Neumann problems
- Nonauton. Dyn. Syst , 2021 (8) : 180-206
Discipline :
Mathématiques
Auteur(s) :
M.B. Benboubker, H. Hjiaj, I. Ibrango, S. Ouaro
Auteur(s) tagués :
OUARO Stanislas
Renseignée par : OUARO Stanislas
Résumé
This paper is devoted to study some nonlinear elliptic Neumann equations of the type
⎧⎩⎨⎪⎪Au+g(x,u,∇u)+|u|q(⋅)−2u=f(x,u,∇u)∑i=1Nai(x,u,∇u)⋅ni=0in Ω,on ∂Ω,
in the anisotropic variable exponent Sobolev spaces, where A is a Leray-Lions operator and g(x,u,∇u), f(x,u,∇u) are two Carathéodory functions that verify some growth conditions. We prove the existence of renormalized solutions for our strongly nonlinear elliptic Neumann problem
Mots-clés
quasilinear elliptic equation; Neumann problem; existence